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Abstract.
In this work we propose a novel parametric Bayesian model for the

problem of semi-supervised classification and clustering. Standard
approaches of semi-supervised classification can recognize classes
but cannot find groups of data. On the other hand, semi-supervised
clustering techniques are able to discover groups of data but can-
not find the associations between clusters and classes. The proposed
model can classify and cluster samples simultaneously, allowing the
analysis of data in the presence of an unknown number of classes
and/or an arbitrary number of clusters per class. Experiments on syn-
thetic and real world data show that the proposed model compares
favourably to state-of-the-art approaches for semi-supervised cluster-
ing and that the discovered clusters can help to enhance classification
performance, even in cases where the cluster and the low density sep-
aration assumptions do not hold. We finally show that when applied
to a challenging real-world problem of subgroup discovery in breast
cancer, the method is capable of maximally exploiting the limited
information available and identifying highly promising subgroups.

1 Introduction
Semi-supervised learning (SSL) is a well-known area of machine
learning. The main idea is to exploit both labeled and unlabeled data
to increase the performance of classification and clustering. This is
motivated by the fact that labeled data are ususally expensive to col-
lect and unlabeled data may aid to learning. The SSL field encom-
passes both semi-supervised classification and semi-supervised clus-
tering [11]. In the former case, the goal is predicting the labels of un-
labeled data based on few observed labeled samples, and smoothness
assumptions are typically used in developing methods. The latter task
aims at finding clusters in data subject to some given supervised con-
straints, defined usually as must- and cannot-link between instances.

Discriminative approaches, like Semi-Supervised SVM [7] or
Laplacian SVM [6], provide among the best performance in semi-
supervised classification. This is because they focus on minimizing
an objective function based on classification error, by directly learn-
ing the mapping function between the sample and the class space.
As a drawback, they cannot provide precise information about intra-
class variabilities, since they do not estimate the class-conditional
densities. On the other hand, generative approaches learn the joint
probability density function over inputs and labels and, while usu-
ally not as accurate in classification [11], allow one to model both
inter- and intra-class structures.

Concerning semi-supervised clustering, existing algorithms are
able to discover the patterns of input data, but they strongly rely on
the assumption that clusters have a direct correspondence with the
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structure of classes, the so-called cluster assumption [11]. However,
there are many real-world situations where this assumption does not
hold [16]. In fact, if labeled classes split up in different sub-clusters
or if several classes cannot be distinguished leading to one larger
cluster, then all existing approaches fail. As we will see later on in
the experiments, the cluster assumption is not guaranteed also when
feature dimensionality reduction is applied to the data.

Existing SSL approaches typically focus on either classification or
clustering. However, many real-world applications requires to jointly
address both tasks by classifying data and identifying groups within
each class. Medicine is a paradigmatic example of this requirement.
Many diseases are characterized by symptoms for which the discrim-
ination between healthy and pathological cases is often hard, due to
the lack of complete understanding of the pathology. Moreover, since
the signs of each disease may assume multiple forms, discriminat-
ing between the healthy and pathological conditions is not sufficient,
and identifying also the different forms of the disease becomes cru-
cial [28].

Based on all these considerations, we introduce a unified gener-
ative framework based on mixture of factor analysers that jointly
performs classification and reveals the hidden structure of data by
estimating the modes and the factors of the class-conditional densi-
ties.2 The framework only relies on the manifold assumption and is
thus able to deal with cases where the cluster assumption is not valid.
Experiments on synthetic and real world data show that the proposed
model compares favourably to state-of-the-art approaches for semi-
supervised clustering and that the discovered clusters can help to en-
hance classification performance. We show also that the proposed
model is designed to exploit maximally the limited available infor-
mation and that it is particularly suited to applications where the col-
lection of new data is very expensive, like in the case of breast cancer
samples.

The rest of the paper is organized as follows. At first, the propa-
bilistic graphical model of the mixture of factor analysers in the
semi-supervised setting is introduced, then a variational approxima-
tion to the log-likelihood function over training data is derived in
order to make the posterior inference computationally and analyt-
ically tractable and to be able to predict the labels of new unseen
data. Related works are then reviewed to highlight the main differ-
ences with the proposed method. After that, an extensive analysis of
the results obtained in both semi-supervised classification and semi-
supervised clustering is provided. Furthermore, the method is tested
on a challenging real-world problem consisting in the identification
of subgroups in breast cancer samples, obtaining significant results
that confirm our claims. Finally, we briefly discuss the main findings
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and highlight some possible directions for future work.

2 Probabilistic Model
We start by introducing a fully-supervised model and then extend
it to the semi-supervised case. Given a set of i.i.d. observations
Y = {yn}Nn=1, where yn ∈ Rd, and the respective set of labels
C = {cn}Nn=1, where cn specifies that yn belongs to one among
K predefined classes, the goal is to learn the underlying distribution
generating the observations, namely the class-conditional densities.
In particular, if we assume that the densities can be approximated
by a Gaussian mixture and that high-dimensional data vectors lie ap-
proximately on a lower dimensional subspace, then we can model the
data distribution as a mixture of factor analysers (MFA).

In the MFA model, if a factor analyser sn is given (sn is an indica-
tor variable identifying one among S factors), then each sample yn

is described through the following linear relation

yn = Λsnxn + µsn + ξ

where xn ∈ Rk is a latent vector distributed according to a Gaussian
density with zero-mean and covariance equal to the identity matrix,
Λsn ∈ Rd×k and µsn ∈ Rd are respectively the factor loading ma-
trix and the bias of factor analyser sn, and ξ ∈ Rd is the noise dis-
tributed according to a normal density with diagonal covariance ma-
trix defined by Ψ. From this, it is not difficult to show that each sam-
ple yn can be generated by sampling a Gaussian density with mean
value equal to µsn and covariance matrix equal to ΛsnΛ

T
sn + Ψ

[17]. As a consequence, the MFA model can be equivalently inter-
preted as a Gaussian mixture. In this case, the vector of the mixing
proportions is defined by the latent vector π ∈ [0, 1]S .

It is worth noting that Λsn incorporates information about the lo-
cal dimensionality of component sn, while Ψ models the variability
of data inside that component, namely the noise variance. Parameters
µsn and Λsn are treated as random variables, such that inference is
performed by averaging over the ensemble of models and therefore
model complexity is automatically taken into account.

The MFA model is an unsupervised method that simultaneously
addresses the problem of clustering and the problem of local dimen-
sionality reduction. Supervision can be incorporated into this model
by introducing for each sample yn a pair of independent latent vari-
ables In

.
= (sn, ln), where sn is the above-mentioned cluster in-

dicator, while ln is the class indicator.3 In takes into account all
S×K possible combinations between the two indicators. It is worth
to say that these combinations are not equally probable. In fact, if
we assume that a cluster is associated more likely to one class, then
some combinations of clusters and classes tend to appear more of-
ten than others. The mixing proportions for variable ln are therefore
defined by the set of random vectors B = {βs}Ss=1, where each
K-dimensional βs is governed by a Dirichlet prior. This means that
estimating the distribution over B is equivalent to learning the prob-
abilistic associations between clusters and classes.

The complete set of conditional distributions and priors of our
model is summarized by the following relations:

p(In|π, {βs}Ss=1)
.
= π(sn)βsn(ln)

p(cn|In)
.
= δ(cn − ln)

3 In our case, there is no distinction between ln and cn. Nevertheless, we
keep these two variables separate. This is helpful for modelling scenarios
with multiple and/or noisy labels. In these cases, ln is the hidden true label,
while cn is the label provided by the annotator.
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Figure 1. Representation of the supervised MFA model as a directed
acyclic graph.

p(Λs|νs)
.
=

k∏
j=1

N (0, I/νs(j))

p(νs|a∗, b∗)
.
=

k∏
j=1

Gamma(νs(j)|a∗, b∗)

p(µs|µ∗,ν∗)
.
= N (µ∗, diag(ν∗)−1)

p(π|α∗m∗)
.
= Dir(α∗m∗)

p(βs|γ∗q∗)
.
= Dir(γ∗q∗)

p(xn)
.
= N (0, I)

where I is the identity matrix and νs is a k-dimensional vector whose
elements govern the columns of Λs. The mechanism known as auto-
matic relevance determination (ARD) is used to improve the task of
dimensionality reduction [9]. a∗, b∗,Ψ,µ∗,ν∗, γ∗q∗ are the hyper-
parameters of the model. In Figure 1, we show the graphical repre-
sentation of our probabilistic model.

In the next two sections, we see how to apply this probabilis-
tic graphical model to the semi-supervised scenario. In particular,
a variational approximation of the log-likelihood function over input
data and labels is derived in order to make inference computation-
ally tractable. The unlabeled data are therefore taken into account by
simply adding their contribution to the estimated lower bound. Then,
we show how to predict the labels of unseen data.

3 Variational Approximation
By defining H .

= {xn, In} as the set of hidden variables and Θ
.
=

{π, {βs,Λs,µs,νs}Ss=1} as the set of parameters, we can express
the log-likelihood function over Y and C as

ln p(Y,C) = ln

∫
dΘp(Θ)

∫
dHp(Y,C,H|Θ)

and by exploiting the conditional dependencies defined by the prob-
abilistic graphical model we obtain that

ln p(Y,C) = ln

∫
dΘp(Θ)

N∏
n=1

S∑
sn=1

K∑
ln=1

p(In|Θ)p(cn|In)·

·
∫

dxnp(xn)p(yn|Θ,xn, In,Ψ) (1)



Since the integrals in (1) are computationally and analytically in-
tractable, we employ a standard approach to solve the Bayesian in-
tegration based on the variational approximation [2]. In practice, by
introducing some auxiliary distributions for both the parameters and
the hidden variables and by applying the Jensen’s inequality, it is
possible to obtain a lower bound on the log-likelihood over Y and
C, namely

ln p(Y,C) ≥
∫

dπq(π) ln
p(π|α∗m∗)

q(π)

+

S∑
s=1

∫
dβsq(βs) ln

p(βs|γ∗q∗)

q(βs)
+

S∑
s=1

∫
dνsq(νs)

·
[
ln

p(νs|a∗, b∗)

q(νs)
+

∫
dΛ̃sq(Λ̃s) ln

p(Λ̃s|νs,µ
∗,ν∗)

q(Λ̃s)

]

+

N∑
n=1

S∑
sn=1

K∑
ln=1

q(In)

[ ∫
dπq(π)

∫
dβsnq(βsn)

· ln p(In|π,βsn)

q(In)
+

∫
dxnq(xn|In) ln

p(xn)

q(xn|In)

+ ln p(cn|In)
∫

dΛ̃snq(Λ̃sn)

∫
dxnq(xn|In)

· ln p(yn|Λ̃sn ,xn, In,Ψ)

]
.
= F

(
Q
)

(2)

where Q is the set of all auxiliary distributions, namely q(π),
{q(βs), q(νs), q(Λ̃s)}Ss=1, {q(In), q(xn|In)}Nn=1, and Λ̃s repre-
sents the concatenation between Λs and µs. By maximizing the
functional F , the lower bound is guaranteed to monotonically in-
crease [5] and can be used as an approximation of the log-likelihood
function over Y and C. Furthermore, the functional F is used to
compare models with different number of factor analysers in order
to perform automatic model selection and choose the proper value of
S.

The model can be further extended to perform semi-supervised
classification by introducing the set of unlabeled observations Y ′ =

{y′
m}N

′
m=1 and by averaging over all possible labels. The extended

log-likelihood function is therefore approximated following the same
procedure in (2), namely

ln p(Y, Y ′, C) ≥ F
(
Q
)
+

N′∑
m=1

S∑
sm=1

K∑
lm=1

q(Im)

[ ∫
dπq(π)

·
∫

dβsmq(βsm) ln
p(Im|π,βsm)

q(Im)
+

∫
dxmq(xm|Im)

· ln p(xm)

q(xm|Im)
+

∫
dΛ̃smq(Λ̃sm)

∫
dxmq(xm|Im)

· ln p(y′
m|Λ̃sm ,xm, Im,Ψ)

]
(3)

which is equivalent to (2) except for the last three addends, that rep-
resent the contribution of unlabeled samples to the the lower bound.

4 Posterior Inference and Prediction
Posteriors over parameters and hidden variables are estimated by op-
timizing the functional in (3). The optimization is performed by tak-
ing the functional derivatives of (3) with respect to all auxiliary dis-
tributions q(·) and equating them to zero. Similarly, the hyperparam-
eters of the model are estimated by simply taking the derivatives of

the lower bound in (3) with respect to a∗, b∗,Ψ,µ∗,ν∗, γ∗q∗. This
operation is equivalent to performing a maximum likelihood estima-
tion, where the true log-likelihood function is replaced by its lower
bound. Iterative updates of the auxiliary distributions and of the hy-
perparameters guarantee to monotonically and maximally increase
the lower bound in (3), as shown in [5].

After the optimization is completed, the model can be used to
predict the labels of new observed samples. In fact, if we define
D = Y ∪ Y ′ as the set of data used for training the model and
Y ′′ = {y′′

j }Mj=1 as the set of test data, then the new labels can be
estimated by maximizing the log-likelihood function conditioned on
D and C. During the maximization, ln p(Y ′′|D,C) can be approx-
imated by replacing the true parameter posterior with the estimated
auxiliary distribution over the parameters, namely

ln p(Y ′′|D,C) = ln

∫
dΘp(Θ|D,C)

∫
dHp(Y ′′,H|Θ, D,C)

≈ ln

∫
dΘq(Θ)

∫
dHp(Y ′′,H|Θ, D,C) (4)

Integrals in (4) are computationally intractable. Similarly to the (2)
and (3) cases, we thus look for a tractable lower bound on
ln p(Y ′′|D,C)

ln p(Y ′′|D,C) ≥
M∑
j=1

S∑
sj=1

K∑
lj=1

q(Ij)

[ ∫
dπq(π)

∫
dβsj q(βsj )

· ln
p(Ij |π,βsj )

q(Ij)
+

∫
dxjq(xj |Ij) ln

p(xj)

q(xj |Ij)

+

∫
dΛ̃sj q(Λ̃sj )

∫
dxjq(xj |Ij) ln p(y′′

j |Λ̃sj ,xj , Ij ,Ψ)

]
(5)

Note that (5) is similar to the last three addends of (3). In this case,
we are only interested in estimating the labels of test data and this is
performed by taking the functional derivatives of (5) with respect to
q(Ij) for j = 1, . . . ,M .

5 Related Work
Mixture of Factor Analysers (MFA) has been extensively studied in
the past. The model is targetted to the unsupervised learning setting,
especially to perform model-based clustering in high-dimensional
data [17]. The property of handling data in high dimensions is funda-
mental to distinguish it from the classical finite mixture models [25],
like the mixture of Gaussians. Another interesting property is that
the model can perform local dimensionality reduction. These aspects
are particularly insightful for applications in computer vision, to per-
form density image estimation [34] and object tracking [35], or in
biology, to cluster microarray data based on genes [24]. For a de-
tailed overview of MFA and finite mixture models see [10]. The
properties of MFA are promising also for the supervised and the
semi-supervised learning setting and our work proposes an approach
exactly in that regard.

Some other works based on finite mixture models are similar to
ours, but differs for the kind of assumptions made. The work in [26]
proposes a Gaussian mixture model that integrates the information
about the presence/absence of labels to perform new class discov-
ery. The model assumes that each cluster has a distribution over la-
bels, but no information about the correspondences between classes
and clusters is added to the generative model, thus making it de-
pendent on the cluster assumption. In the experimental section we



will see that this assumption is quite limiting for many cases. The
work in [27] proposes a finite mixture model for semisupervised
classification. In their generative model, labeled samples are condi-
tioned to unlabeled ones in order to ensure that, during the inference
stage, the propagation of labels through the unlabeled samples re-
spects the smoothness assumption. The authors apply the method
also to the unsupervised learning setting, in particular to perform
density estimation. Nevertheless, the experimental evaluation high-
lights the limitations of the method in this kind of setting, where the
results are frequently worse than performance obtained by standard
unsupervised techniques. In the context of semi-supervised cluster-
ing, the works in [21, 23, 22, 3] have addressed the problem of
constraint propagation proposing solutions that fulfill both the con-
traints and the smoothness requirement. Like the other works in
semi-supervised classification, they haven’t considered that the prob-
lem of label/constraint propagation may be due to the violation of
the cluster assumption. The recent work in [31] is probably the clos-
est to ours. The method introduces a finite mixture model able to
deal with an arbitrary number of clusters and classes. The learning
is performed by optimizing an objective characterized by the log-
likelihood function weighted by a term penalizing the violation of
the must- and cannot-link constraints. Furthermore, a hard assign-
ment between clusters and classes determines a partitioning of the
feature space in which the majority of the constraints is satisfied. In
our approach, instead, the assignment between clusters and classes
is soft. This is essential for modelling the uncertainty of assignment
due to the small amount of supervised information. Furthermore, the
method is tested on datasets characterized by only few dozens of fea-
tures.

The authors in [20] have recently proposed a unified framework
that combines deep neural networks with generative models. The
neural network learns an embedding of data and the generative mod-
els performs classification based on this new representation. The
combination of these two parts is obtained by definining a single
probabilistic graphical model that permits to achieve good classifica-
tion performance even when compared to discriminative approaches.
Nevertheless, the framework is not designed to perform clustering
and is based on the assumption that there exists a data representation
for which the cluster assumption is valid. Furthermore, the use of a
deep neural network requires generally large data sets for training,
besides having to choose the proper architecture, making the frame-
work not suitable to applications with limited number of samples.

6 Experimental Results

6.1 Data sets

In order to assess the performance of the proposed model and com-
pare it with state-of-the-art approaches, we performed experiments
on three artificial and three real world data sets. Table 1 summarizes
their properties.

Table 1. Experimental data sets

Data sets Classes Features Instances
G50C 2 50 550
CAKE 2 2 1000
TOES 2 2 1000
IRIS 3 4 150
USPS 3 256 1918
ISOLET 2 617 3119

The first synthetic data set, G50C, is inspired by [18]. Data
are generated from two standard normal densities located in a 50-
dimensional space, such that the Bayes error is 5%. In this case,
each class is represented by only one Gaussian. In the second
data set, CAKE, data are uniformly distributed according to a two-
dimensional round shape. Two orthogonal decision functions are
used to discriminate between the two classes in order to make them
non-linearly separable. The Gaussian and the cluster assumptions do
not hold in this case. The third data set, TOES, represents the case
where class-conditional densities are characterised by multiple clus-
ters. Samples are drawn independently from a two-dimensional den-
sity composed by five Gaussians, two for the first class and three for
the second class. The two classes have the same prior, resulting into a
balanced number of samples per class. The different number of clus-
ters per class is useful to analyse how unlabeled data influence the
decision boundary. Figures 3(a) and 4(a) show the representation of
the CAKE and the TOES data sets respectively.

The real world data sets consist of two-class and multi-class prob-
lems from the UCI repository. The IRIS data set contains data be-
longing to three different classes of iris plants. One of the three
classes is not linearly separable from the others. The second real
world data set, USPS, represents a well-known benchmark for had-
written digits recognition. In our experiments, we only used samples
belonging to the categories of digits 3, 8 and 9, which are among the
most difficult classes to recognize [15]. In order to deal with real-
valued vectors, normalized histograms are used as feature descrip-
tors. Finally, the ISOLET data set contains high-dimensional data for
the spoken letter recognition task. In our case, the first three subsets
of the whole collection were considered. Similarly to [6], we decided
to classify the first 13 letters of the English alphabet from the last 13.

For the USPS and ISOLET data sets, we first apply a state-of-
the-art technique for unsupervised dimensionality reduction, called
t-SNE [14]. The motivation for the choice of t-SNE relies on the ca-
pability of visualizing high-dimensional data sets in a two or three-
dimensional map without loosing too much information about the
local and the global structure of data. Compared to other existing
techniques, like Sammon mapping, Isomap and Locally Linear Em-
bedding, t-SNE provides significantly better performance, especially
in the data visualization task.

6.2 Semi-Supervised Clustering

For each data set, the number of labeled instances is varied in be-
tween 0 and 90 samples per class. For each of these configurations,
20 different data sets are generated by random sampling. To adhere
to the problem of semi-supervised clustering, labeled samples are
then converted into a balanced number of must- and cannot-link con-
straints following the same procedure of [1]. Performance are mea-
sured in terms of the normalized mutual information (NMI) using the
true labels as gold standard.

We compare our method, called Classtering (CLSST for short),
with four state-of-the-art approaches. The first method proposed in
[33] is based on the integration of supervised constraints into a Gaus-
sian mixture model (CGMM). The second method (MCCC) is the
recent work proposed in [36], where the problem is formulated as a
matrix completion task. The third method in [8] is based on an exten-
sion of the k-means algorithm (MPCK), where constraints and metric
learning are incorporated into the objective function to enhance the
performance. The last method is the semi-supervised kernel mean
shift (SKMS) proposed in [1], where data are first mapped into a
higher dimensional space and then clustered by the mean shift algo-
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Figure 2. Experimental results for semi-supervised clustering (the higher
the better).

rithm.
For all competitors, the parameters are chosen from a finite grid

set such that the best performance are always considered. In par-
ticular, the tradeoff parameter C for MCCC is chosen from the
set {0.1, 1, 10, 100, 1000}, while the regularization parameter γ of
SKMS is chosen from the range {10, 100, 1000}. It is important to
mention that the number of clusters for MCCC, MPCK and CGMM
is equal to four in CAKE and five in TOES, while it is chosen to
be equal to the number of classes in all other data sets, as done in
[1, 33, 8, 36]. It is also worth noting that our algorithm does not re-
quire to set any parameter manually, since all hyperparameters are
learnt automatically during the training procedure.4

Figure 2 shows the results obtained over all data sets. CLSST
clearly outperforms all competitors in all cases, except for the G50C
data set. In this case, the data are generated from a distribution of two
Gaussians with identity covariance matrices. Authors in [4] prove
mathematically that the k-means algorithm is equivalent to perform-
ing an EM algorithm on a mixture of Gaussians under the assumption
of identity covariance matrices and uniform mixture priors, which
clearly motivates why MPCK, that is k-means-based, achieves very
good performance. The gap with respect to the results obtained by
CLSST on G50C are mainly due to the fact that, while in CLSST the
parameters of the Gaussians are assumed to be random variables, in
MPCK it is assumed that there only exists a unique combination of
true parameters. It is worth mentioning that CLSST and CGMM are
both algorithms based on Gaussian mixtures. In fact, when consid-

4 Except for the dimensionality of the latent variables xn, which is always
set to a low value.

(a) Labels (b) MCCC (c) MPCK

(d) CGMM (e) SKMS (f) CLSST

Figure 3. Estimated labels for semi-supervised clustering on CAKE data
set (87 labels per class)

(a) Labels (b) MCCC (c) MPCK

(d) CGMM (e) SKMS (f) CLSST

Figure 4. Estimated labels for semi-supervised clustering on TOES data
set (87 labels per class)

ering cases characterized by one cluster per class, namely the G50C
and the IRIS data sets, the performance of both methods are almost
equivalent. When the cluster assumption does not hold, viz in the
CAKE data set, it is clearly visible that all methods, except CLSST,
fail. The same holds when considering multiple clusters per class,
i.e. the TOES data set. A representative example of the results ob-
tained on CAKE and TOES can be visualized more intuitively in
Figure 3 and Figure 4. A thorough analysis of the results obtained
on the USPS and the ISOLET data sets performed by data visual-
ization indicates that in both cases we have a superposition of two
effects, namely the absence of validity of the cluster assumption and
the presence of multiple clusters per class, which explains why re-
sults are qualitatively similar to those obtained on the CAKE and the
TOES data sets.

6.3 Semi-Supervised Classification
For each data set, 5-fold cross-validation is used to split data into
training and test parts. For each training split, the number of labeled
instances is varied between 0 and 70 samples per class. 10 different
data sets are then generated by random sampling. In these experi-
ments, we provide estimates of the generalization error. Performance
are measured in terms of the error rate, since all datasets have a bal-
anced number of samples per class.
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Figure 5. Experimental results for semi-supervised classification (the
lower the better).

Our method is compared against two state-of-the-art approaches.
The first method [12] is based on the low-density separation assump-
tion (LDS), which is the equivalent supervised form of the cluster
assumption. A nearest-neighbor graph is used to compute the kernel
matrix of an SVM. The second method proposed in [6] is an exten-
sion of the SVM framework, namely the Laplacian SVM (LapSVM).
In particular, a penalty term is added to the objective function to take
into account the marginal distribution of unlabeled data.

For each training data set, hyperparameters for the two competi-
tors are selected from a finite grid using an inner 3-fold cross-
validation procedure. For LDS, ρ and C are respectively chosen from
{1, 2, 4, 8} and {0.1, 1, 10, 100}. In LapSVM, γA and γI are cho-
sen from the same range, namely {0.005, 0.045, 05}. The σ value is
chosen for both methods in the range {0.1, 1, 10} in a transductive
setting on the entire training set.

Figure 5 shows the results obtained over all data sets.
CLSST outperforms all other approaches in almost all cases, ex-

cept for the G50C and the CAKE data sets. G50C is in fact the per-
fect scenario for approaches relying on the low density separation
assumption, as it was previously seen in the clustering setting for the
methods based on the cluster assumption. This motivates why LDS
provides good performance even when the number of labeled sam-
ples is small.

In the CAKE data set, CLSST performs slightly worse than
LapSVM. This is due to the fact that the Gaussian mixture density
is not able to fit properly with the uniform distribution of unlabeled
samples. The bias decreases as the number of labeled samples in-
creases. In contrast, LapSVM is able to control the negative effect

of the unlabeled samples even when the number of labeled data is
small by assigning a higher value to the classification error term in
the objective function. In all other cases, it is evident that CLSST
achieves better performance than its competitors. This can be ex-
plained by the fact that our model is really flexible in estimating the
class-conditional densities and the gained information about these
distributions provides an effective way to fully exploit the unlabeled
samples and increase the classification accuracy.

6.4 Subgroup Discovery in Breast Cancer

We finally tested our algorithm on a challenging real-world problem
consisting in the identification of subgroups in breast cancer sam-
ples. A recent extensive study [13] analysed about 2,000 clinically
annotated primary breast cancers collected from various sources and
identified 10 novel subgroups with varying degrees of confidence.
The authors used a subset of 997 samples as discovery set to iden-
tify clusters, and the remaining 995 ones as validation set to evaluate
robustness of the detected clusters. Clustering was done with a joint
latent variable model [32] on a set of 754 gene expression profiles.
Reproducibility of clustering was measured in terms of in-group pro-
portion (IGP) [19], which is the proportion of samples in a group
whose nearest neighbours are also in the same group, after assigning
samples in the validation set to the clusters in the discovery set.

Characterizing tumors in terms of subclasses is a crucial step in
order to understand their behaviour and variability, and there is ex-
tensive literature addressing this task and proposing various classica-
tion schemes. Five ”intrinsic” subtypes of human breast tumors have
been identified in early studies [30] and termed Luminal A, Luminal
B, HER2-Enriched (HER2-E), Basal-like and normal. The PAM50
gene is typically used [29] for gene expression-based subtyping in
these five groups. Most of the 10 clusters identified in [13] contain
samples belonging to multiple subtypes.

What we plan to investigate here is whether incorporating intrin-
sic subtype classification as class labeling can produce a clustering
with improved generalization capability, as measured by IGP. We
first reduce data to 50 features using PCA in order to alleviate the
problem of redundant features and then apply CLSST to discover
the clusters. In this particular setting, the algorithm discovers seven
groups achieving an averaged IGP of 74.8%, with a minimum value
of 57.5% and a maximum of 91.2%. After this, we investigate a sec-
ond setting, where we run CLSST by fixing the number of clusters
to ten, in order to have a fair comparison with the results reported
in [32]. In this second configuration, the obtained IGP scores range
from a minimum of 55.7% to a maximum of 92.7% with a mean
value equal to 70.6%. In both settings, the performance are better
than those obtained in [32], where the IGP values span from a mini-
mum of 44.8% to a maximum of 82.4% with a mean value equal to
65.4%. The performance improvement is on average greater than 5%,
indicating that our algorithm successfully exploits the supervised in-
formation in performing group discovery. Table 2 reports the com-
plete set of results for [32] and for CLSST in the two settings, with
clusters ordered by decreasing IGP value.

With this study we are not claiming that the clusters we found
are more biologically relevant than those identified by the original
method, as this would require in-depth analyses and extensive val-
idations, which are out of the scope of this work. Nonetheless, we
believe that the obtained results are promising and highlight the po-
tential of the method in discovering structure in data.



Table 2. Results on breast cancer data set evaluated in terms of IGP
measure. Clusters are ordered by decreasing IGP value.

Cluster [13] CLSST (fixed S) CLSST (variable S)
1 0.8235 0.9266 0.9117
2 0.8099 0.8639 0.8377
3 0.7281 0.7899 0.7931
4 0.7091 0.6867 0.7730
5 0.6866 0.6842 0.7624
6 0.6455 0.6794 0.5833
7 0.6015 0.6780 0.5745
8 0.5818 0.6000 -
9 0.5072 0.5965 -

10 0.4481 0.5574 -

7 Discussion

In this work, a model based on mixture of factor analysers is pro-
posed for both semi-supervised clustering and semi-supervised clas-
sification. Evaluation is performed on synthetic and real-world data
sets. Results provide evidence about the effectiveness of the proposed
model, especially when the cluster or the low density separation as-
sumption does not hold. Furthermore, we have applied the proposed
method to a challenging real-world problem consisting in the identifi-
cation of subgroups in breast cancer samples and achieved promising
results that enable future research in this direction. Other possible di-
rections consist of extending the model to deal with multiple labels
(e.g. difference classification schemes for tumors) and to perform ac-
tive learning.
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