
Building a Binary Classifier Using Neural Networks

Emanuele Sansone∗

January 12, 2017

1 Basics of statistical learning theory (binary classification
problem)

Figure 1: Example of binary classification problem. Each point corresponds to an image. Each
color represents a class (the blue color is associated with class "cat" and the green color is associated
with class "dog"). The goal is to learn the boundary (highlighted in red) between the two classes
given the available images.

Let us consider the binary classification problem: we are given a training datasetDb = {(xi, yi) :
xi ∈ X, yi ∈ Y }mi=1, where X ⊆ Rd, Y = {−1, 1} and each pair of samples in Db is drawn
independently from the same joint distribution P defined over X and Y . The goal is to learn a
function f that maps the input space X into the class set Y . In order to familiarize with this
notation, let us consider the example in Figure 1, where the goal is to learn an image classifier
discriminating between "cats" and "dogs". In this case, each point/image is represented by a
two-dimensional vector denoted by xi, where i is used to identify an image in the training dataset,
while yi represents its respective class (either cat or dog). The boundary (e.g. linear separator) is
denoted by function f .

How to learn f? Statistical learning theory [Vap99] provides us with a theoretically grounded
answer. Assuming that P is known, the function f can be learnt by minimizing the risk functional
R, namely

R(f) =
∑
y∈Y

∫
`(f(x), y)P(x, y)dx

=π

∫
`(f(x), 1)P(x|y = 1)dx+ (1− π)

∫
`(f(x),−1)P(x|y = −1)dx (1)

where π is the positive class prior, viz. P(y = 1), and ` is a loss function measuring the disagree-
ment between the prediction of our classifier and the ground truth for sample x, viz. f(x) and
y, respectively. For example, if ` is defined in the following way (equivalent to the definition of
zero-one loss):

`(f(x), y) =
{

1 f(x) 6= y
0 f(x) = y

(2)

∗https://emsansone.github.io/

1

https://emsansone.github.io/

Figure 2: Example of binary classification problem. Two possible hypotheses are shown.

then the risk functional R is equivalent to the expected classification error rate.1 More generally
the risk functional is the expected value of the loss function, which is directly connected with the
performance of the classifier. The higher is the number of misclassified samples, the higher is the
risk/loss incurred by the classifier. Therefore, we need to find the function that minimizes it.

But P is unknown! This prevents us to compute the integrals in (1). If we cannot compute
them exactly, then we can look for approximations. A good solution is to use the mean estimates
over the available training data and this leads to the definition of the empirical risk functional,
namely:

R(f) ≈ Remp(f) =
π

|D+
b |

∑

xi∈D+
b

`(f(xi), 1) +
(1− π)

|D−b |
∑

xi∈D−
b

`(f(xi),−1) (3)

where D+
b and D−b are the portions of dataset Db belonging to the positive and negative class,

respectively, while | · | is the cardinality operator. Unfortunately, minimizing (3) is an ill-posed
problem, in the sense that multiple solutions may exist. This is because we are considering a finite
number of training samples and thus many different classifiers can correctly discriminate them.
For example, in Figure 1 there are multiple lines (in reality an infinite number of them) which
separate correctly the two classes. The set of feasible solutions can be reduced to consider only
"simple/smooth" cases. Let us consider the example in Figure 2, where there are two possible
hypotheses for the family of polynomial functions. In this case, it would be more reasonable to
choose the less complex function, namely the linear separator. The notion of simplicity/smoothness
refers therefore to the complexity of the model. In order to make our problem well-posed, we
can add a term (also called regularizer) to the empirical risk functional in order to penalize the
complexity of solutions, namely:

Rλemp(f) =
π

|D+
b |

∑

xi∈D+
b

`(f(xi), 1) +
(1− π)

|D−b |
∑

xi∈D−
b

`(f(xi),−1) + λΩ(f) (4)

where Ω is the regularizer and λ is a real-positive weight which is used to balance the relative
importance of the complexity of the solution with respect to its expected loss (namely the first two
terms in (4)). Therefore, the binary classification problem is defined as follows:

f∗ = arg min
f∈F
Rλemp(f) (5)

where F is our solution space, called the hypothesis space. So far, we have considered examples
with linear or polynomial functions. In the next section, we will consider more complex models.

We need to choose the loss function! The zero-one loss is the desired function, since
it is directly connected with the classification error rate. Nevertheless, solving problem (4) with
the zero-one loss is difficult firstly because it is NP-hard [FGRW12] and secondly because it is
non-convex and it is therefore affected by the problem of local optima. What is usually done is

1Note that solving the binary classification problem with the zero-one loss is in general a NP-hard prob-
lem [FGRW12].

2

yf(x)
-3 -2 -1 0 1 2 3

ℓ(
f
(x
),
y
)

0

1

2

3

4

5

6 Zero-one loss
Hinge loss
Logistic loss
Double Hinge loss

Figure 3: Visual comparison between different convex loss functions and the zero-one loss.

to use a convex loss function which approximates well the zero-one loss. The work in [RDVC+04]
shows that such best choice corresponds to the Hinge loss function, namely:

`(f(x), y) = max{0, 1− yf(x)} (6)

Figure 3 provides a visual representation of different convex loss functions (compared against
the zero-one loss). From that, it is quite evident that the Hinge loss is the function that best
approximates the zero-one loss.

Let us now rewrite Rλemp using the Hinge loss function and denote the new regularized empirical
risk as Rλ,Hemp, which allows to formulate the following optimization problem:

f∗ = arg min
f∈F
Rλ,Hemp(f)

arg min
f∈F

{
π

|D+
b |

∑

xi∈D+
b

max{0, 1− f(xi)}+
(1− π)

|D−b |
∑

xi∈D−
b

max{0, 1 + f(xi)}+ λΩ(f)

}
(7)

This is our final formulation of the binary classification problem.

2 Basics of neural networks
In the previous section, we have seen how to formulate the binary classification problem as an
optimization task. Here, we focus the attention on the family of functions (the hypothesis space),
which can be described by parametric models, more specifically by neural networks.

The choice of using neural networks is dictated by the following reasons:

• Biological inspiration. Neural networks are frameworks whose aim is to reproduce the
structure as well as the functionality of the human brain [MP43].

• Representational power. Neural networks can model large families of functions and there-
fore can be applied to a large variety of real-world problems [Cyb89].

• Representation learning. Neural networks allow to reduce the problem of feature engi-
neering, because they learn new feature representations automatically from data [BCV13].

The computational unit of a neural network is the artificial neuron, which reproduces the
functionality of the biological neuron in the human brain. Figures 4a-4b provide a visual analogy
between the biological and artificial neurons. In the biological case, electrical signals are propagated
through the dendrites and are accumulated in the body cell of the neuron. If the accumulated
signals exceed a given level of charge, then the neuron is activated and an eletrical signal is sent
through the axon. In the artificial case, the propagation of signals is modelled through the weighting
of inputs, the accumulation of signals is performed through the summation operator and the output
activation is controlled by function g, called the activation function. In literature, many different
activation function are used. Some examples are given in Figure 5, namely:

3

(a) Biological neuron

1

x1

x2

...

xd

Σ g(z) ŷ

b

w1

w2

wd

z

h(·; w)

(b) Artificial neuron

Figure 4: Visual analogy between biological and artificial neurons.

• The binary threshold activation.

g(z) =

{
1, z > 0
0, z ≤ 0

• The linear activation.
g(z) = z

• The rectified linear activation.
g(z) =

{
z, z > 0
0, z ≤ 0

• The sigmoid activation.

g(z) =
1

1 + e−z

Therefore, the response of the artificial neuron to an input vector x ∈ Rd is given by ŷ = h(x;w) =
g(wTx + b), which depends on the values of w = [w1, . . . , wd]

T and b as well as on the kind of
activation function employed.

By combining multiple artificial neurons, it is possible to build more sophisticated models,
which are able to describe more complex functions. Typical architectures of neural networks can
be classified according to three main categories:

• Feedforward neural nets. They are organized in multiple layers stacked on top of each
other (we distinguish between input, hidden and output layers). Each layer transforms
the output of its previous layer and provides the result to the next layer. If we denote
h(l) as the transformation performed by layer l,2 where l ∈ {1, . . . , L, L + 1}, then the
global effect of a feedforward neural net is equivalent to a composition of functions, namely
ŷ(L+1) = f(x) = h(L+1) ◦ h(L) ◦ · · · ◦ h(1)(x). See Figure 6a for a graphical representation.
For the sake of notation compactness, we define W(l) ∈ Rnl×nl−1 as the matrix containing
the weights of all neurons in a given layer l (included the bias). nl is the number of neurons
in layer l.

• Recurrent neural nets. They are simple neural networks with the addition of a memory
mechanism, which keeps track about the state of the network. They are mainly used for
data sream processing. The output of these networks is a function that depends on the
current input data (at time t) and the previous state (at time t− τ), namely ŷ(2) = f(x) =

h(2)(W (2)h
(1)
t (W (1)x+W stateh

(1)
t−τ)). See Figure 6b for a graphical representation.

2Note the use of vector notation. Here we are considering the effect of all neurons in layer l.

z

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

g
(z
)

0

0.5

1

1.5

(a) Binary threshold

z

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

g
(z
)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Linear

z

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

g
(z
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) Rectified linear

z

-4 -3 -2 -1 0 1 2 3 4

g
(z
)

0

0.2

0.4

0.6

0.8

1

1.2

(d) Sigmoid

Figure 5: Activation functions for artificial neurons.

4

1 x1 x2 . . . xd

1 h
(1)
1 h

(1)
2

. . . h
(1)
n1

1 h
(2)
1 h

(2)
2

. . . h
(2)
n2

...
...

...

1 h
(L−1)
1 h

(L−1)
2

. . . h
(L−1)
nL−1

1 h
(L)
1 h

(L)
2

. . . h
(L)
nL

h(L+1)

ŷ(L+1)

h(1)

h(2)

h(L−1)

h(L)

W(1)

W(2)

W(L)

W(L+1)

(a) Feedforward

1 x1 x2 . . . xd 1 h
(1)
1 h

(1)
2

. . . h
(1)
n1

1 h
(1)
1 h

(1)
2

. . . h
(1)
n1

h(2)

ŷ(2)

τh(1)

h(1)

W(1)
Wstate

(b) Recurrent

1 x1,1 x1,2 . . . x1,d 1 x2,1 x2,2 . . . x2,d

1 h
(1)
1 h

(1)
2

. . . h
(1)
dh(1)

W
(1)
1 W

(1)
2

(c) Recursive

Figure 6: Architectures of neural networks.

1 h
(l−1)
1

. . . h
(l−1)
µ

. . . h
(l−1)
nl−1

1 h
(l)
1

. . .
h

(l)
ν

. . .
h

(l)
nl

θµ,ν,l

h(l−1)

h(l)

W(l)

Figure 7: Notation used to identify the parameters in any layer.

• Recursive neural nets. The simplest architecture consists of many input layers (two or
more) and one hidden layer. The dimensionality of the hidden layer is equal to the one of the
input layers, thus allowing to reuse the basic network to create more complex architectures,
like tree structures. They are mainly used to process/learn structured data (e.g. text). See
Figure 6c for a graphical representation.

In this work, we focus only on feedforward neural networks, also because recurrent as well
as recursive neural nets can be converted into the feedforward category (through time and/or
structure unfolding).

It is important to make a distinction between the terms parameters and hyperparameters
of a network (and more generally of any machine learning model), in order to avoid any source
of confusion and misunderstanding. All unknown quantities of a model, which have to be learnt
during the training stage, are called parameters, while all quantities introduced during the design
stage are called hyperparameters. For example, the parameters of a feedforward neural networks
are the weight matrices W (1), . . . ,W (L),W (L+1), while the hyperparameters of that network are
the number of hidden layers, called L, the number of neurons contained in each layer and all other
design quantities (like λ and π in (7) for the binary classification problem).

Now, we focus on how to train neural networks, or equivalently on how to learn the parameters
using the available training data.

2.1 Training neural networks: the backpropagation algorithm

Modify using delta notation SEE SOLUTION TO ASSIGNMENT

Here, we derive a general algorithm that allows to train any kind of feedforward neural network.
The following three elements are the basic ingredients of any training algorithm (we recall them
to introduce some more general notation):

• A parametric model, viz. a feedforward neural network, which is used to model function

5

f ∈ Fθ, where θ = (θ0,1,1, . . . , θ0,n1,1, . . . , θµ,ν,l, . . . , θ0,1,L+1, . . . , θnL,1,L+1)T ∈ Rk is the
vector containing all parameters.

In this case, θµ,ν,l is equal to the entry of matrix W (l) located at row ν and column µ and
it corresponds to the weight associated with the link going from neuron µ in the (l − 1)-th
layer to neuron ν in the l-th layer. Figure 7 provides a visual summary for this notation.

• A training dataset D = {(xi, yi)mi=1}

• An objective function J(ξ(θ)), which is used to train the neural network, where J :
Rm+1 → R, Ω : Rk → R (is the regularizer function) and

ξ(θ) =

ξ1
...
ξm
ξm+1

 =

f(x1;θ)
...

f(xm;θ)
Ω(θ)

 (8)

If the problem is minimizing J(ξ(θ)), then we can use an iterative algorithm, like the gradient
(subgradient) descent, to find a solution.3 Computing the solution analytically is not generally
feasible, since in the majority of cases the objective function is highly non-linear (i.e. by equating
the gradient of the objective to zero, we would obtain a system of non-linear equations).

Therefore, a local optimal solution4 can be obtained by repeatedly applying the following update
rule (from the gradient descent algorithm):

θt+1
µ,ν,l = θtµ,ν,l − η

∂J(ξ(θt))

∂θµ,ν,l
∀µ, ν, l (9)

where η ∈ R+ is called the learning rate and ∂J(ξ(θt))
∂θµ,ν,l

is computed in the following way:

∂J(ξ(θ))

∂θµ,ν,l
= ∇J(ξ) ·

[
∂ξ1
∂θµ,ν,l

, . . . ,
∂ξm+1

∂θµ,ν,l

]T

=

m+1∑

i=1

∂J(ξ)

∂ξi

∂ξi
∂θµ,ν,l

(10)

In (10), the computation of ∇J(ξ(θt)) is straightforward once ξ(θt) is known, whereas the com-
putation of ∂ξi

∂θµ,ν,l
is more challenging. In fact,

i = m+ 1 ⇒ ∂ξi(θ
t)

∂θµ,ν,l
=
∂Ω(θt)

∂θµ,ν,l
(11)

i = 1, . . . ,m ⇒ ∂ξi(θ
t)

∂θµ,ν,l
=
∂f(xi;θ

t)

∂θµ,ν,l
=
∂ŷ

(L+1)
i

∂θµ,ν,l
=

∂ŷ
(l)
i

∂θµ,ν,l
, l = L+ 1

∂ŷ
(L+1)
i

∂ŷ
(l)
i,ν

∂ŷ
(l)
i,ν

∂θµ,ν,l
, l 6= L+ 1

(12)

which is obtained by applying the chain rule over the composition of functions modelled by the
given network (see Figure 8).

It is important to mention that before computing (12), we need firstly to estimate all of its
3Assuming that J(ξ(θ)) is continuous in θ.
4We are not able to achieve a global optimal solution, since in general the objective function is not convex.

6

1 x1 x2 . . . xd

1 h
(1)
1 h

(1)
2

. . . h
(1)
n1

...

1 h
(L−1)
1 h

(L−1)
2

. . . h
(L−1)
nL−1

1 h
(L)
1 h

(L)
2

. . .

h
(L)
nL

h(L+1)

ŷ
(0)
i = xi

ŷ
(1)
i = h(1)

(
ŷ

(0)
i ; W (1)

)

ŷ
(1)
i = g(1)

(
z

(1)
i

)

z
(1)
i = W (1)ŷ

(0)
i

ŷ
(L−1)
i = h(L−1)

(
ŷ

(L−2)
i ; W (L−1)

)

ŷ
(L−1)
i = g(L−1)

(
z

(L−1)
i

)

z
(L−1)
i = W (L−1)ŷ

(L−2)
i

ŷ
(L)
i = h(L)

(
ŷ

(L−1)
i ; W (L)

)

ŷ
(L)
i = g(L)

(
z

(L)
i

)

z
(L)
i = W (L)ŷ

(L−1)
i ;

ŷ
(L+1)
i = h(L+1)

(
ŷ

(L)
i ; W (L+1)

)

ŷ
(L+1)
i = g(L+1)

(
z
(L+1)
i

)

z
(L+1)
i = W (L+1)ŷ

(L)
i ;

Figure 8: Composition of functions.

terms, namely:

∂ŷ
(l)
i,ν

∂θµ,ν,l
=
dŷ

(l)
i,ν

dz
(l)
i,ν

∂z
(l)
i,ν

∂θµ,ν,l

=
dŷ

(l)
i,ν

dz
(l)
i,ν

ŷ
(l−1)
i,µ , ∀l = 1, . . . , L+ 1 (13)

∂ŷ
(L+1)
i

∂ŷ
(l)
i,ν

=

nl+1∑

ρ=1

∂ŷ
(L+1)
i

∂ŷ
(l+1)
i,ρ

∂ŷ
(l+1)
i,ρ

∂ŷ
(l)
i,ν

=

nl+1∑

ρ=1

∂ŷ
(L+1)
i

∂ŷ
(l+1)
i,ρ

dŷ
(l+1)
i,ρ

dz
(l+1)
i,ρ

∂z
(l+1)
i,ρ

∂ŷ
(l)
i,ν

=

nl+1∑

ρ=1

∂ŷ
(L+1)
i

∂ŷ
(l+1)
i,ρ

dŷ
(l+1)
i,ρ

dz
(l+1)
i,ρ

θν,ρ,l+1, ∀l = 1, . . . , L (14)

where the terms corresponding to the derivatives of the activation functions are highlighted
in blue, the terms measuring the total variation of the output of the whole network due to a little
variation in the output of any hidden neuron, called local-to-global variations, are highlighted
in red, while the outputs of previous layer are highlighted in green.5

Let us note that blue and green terms can be obtained only when ŷ(l−1)
i is known, while red

terms can be obtained only through recursive computation of derivatives from above layers, as it
is shown in Figure 9a and Figure 9b. This is a fundamental aspect, because it tells us that an
iteration of the gradient descent algorithm is equivalent to perform the following two stages:

• Forward propagation. Given a training sample xi, compute and store the derivatives of

activation functions and layer outputs, namely dŷ
(l)
i

dz
(l)
i

and ŷ(l)
i , starting from the lowest layer

and going up to the output layer.

• Backward propagation. Update the weights associated to each network link starting from
the output layer and going down to the lowest layer by applying (9), exploiting information
stored during forward propagation and using equations (10),(11),(12),(13) and (14).

5Equation (13) can be derived by using the chain rule, while Equation (14) can be derived by using the multi-
variable chain rule.

7

(a) (b)

Figure 9: Computation of ∂ξi(θ
t)

∂θµ,ν,l
. On the left, computation of (13); On the right, computation

of (14).

By putting together all considerations made so far, we obtain the so-called backpropagation
algorithm [RHW86], which is summarized in Algorithm 1. It is important to mention that this
derivation of the backpropagation algorithm is very general, therefore it can be used to train any
feedforward neural network for a large variety of tasks, like clustering, dimensionality reduction as
well as classification. In the next section, we consider the specific problem of binary classification.

3 Binary classification using neural networks
In the previous section, we have seen that any training algorithm is characterized by three basic
ingredients, namely a parametric model, a training dataset and an objective function. In the binary
classification problem, these three elements can be defined as follows:

• The output of the feedforward neural network consists of a linear neuron, while all other
layers are characterized by rectifier linear activation units [GBB11].

• The training dataset D is simply the concatenation of D+
b and D−b , viz. the two portions of

training data belonging to the positive and negative classes, respectively.

• The objective function is the same as the one defined in (7). By adopting the same notation
of (8) and using the L2 norm as regularizer Ω(θ)6, we can rewrite (7) as

J(ξ(θ)) =
π

|D+
b |

∑

xi∈D+
b

max{0, 1− ξi}+
(1− π)

|D+
b |

∑

xi∈D−
b

max{0, 1 + ξi}+ λ‖θ‖22 (15)

Before applying the general backpropagation algorithm to the binary classification problem, we
need to compute the gradient of the objective function ∇J(ξ) and the derivatives of the activation
functions ∂ŷi

(l)

∂z
(l)
i

for any layer l of the neural network. Regarding the computation of the gradient

term, we have that for all positive samples xi ∈ D+
b

∂J(ξ)

∂ξi
=

{
0, ξi ≥ 1
− π
|D+
b |
, ξi < 1 (16)

for all negative samples xi ∈ D−b

∂J(ξ)

∂ξi
=

{
0, ξi ≤ −1
1−π
|D−
b |
, ξi > −1 (17)

while for i = m+ 1
∂J(ξ)

∂ξm+1
= λ (18)

6to enhance the sparsity in the obtained solution

8

Algorithm 1 General Backpropagation Algorithm
1: Initialize the network hyperparameters.
2: ŷ

(0)
i = xi.

3:
∂ŷ

(L+1)
i

∂ŷ
(L+1)
i

= 1

4: for Repeat until convergence do
5: Compute ∂ξm+1(θ

t)
∂θ . (11)

6: for l = 1, . . . , L+ 1 do . Forward propagation
7: for i = 1, . . . ,m do

8: Compute and store dŷ
(l)
i

dz
(l)
i

.

9: Compute and store ŷ(l)
i .

10: end for
11: end for
12: for l = L+ 1, . . . , 1 do . Backward propagation
13: for ν = 1, . . . , nl do
14: if l 6= L+ 1 then
15: for i = 1, . . . ,m do

16: Compute and store ∂ŷ
(L+1)
i

∂ŷ
(l)
i,ν

=
∑nl+1

ρ=1
∂ŷ

(L+1)
i

∂ŷ
(l+1)
i,ρ

dŷ
(l+1)
i,ρ

dz
(l+1)
i,ρ

θtν,ρ,l+1. (14)

17: end for
18: end if
19: for µ = 0, . . . , nl−1 do
20: for i = 1, . . . ,m do

21: Compute ∂ξi(θ
t)

∂θµ,ν,l
=

∂ŷ
(L+1)
i

∂ŷ
(l)
i,ν

∂ŷ
(l)
i,ν

∂θµ,ν,l
=

∂ŷ
(L+1)
i

∂ŷ
(l)
i,ν

dŷ
(l)
i,ν

dz
(l)
i,ν

ŷ
(l−1)
i,µ . (12)(13)

22: end for
23: Compute ∂J(ξ(θt))

∂θµ,ν,l
=
∑m
i=1

[∂J(ξ(θt))
∂ξi

∂ξi(θ
t)

∂θµ,ν,l

]
+ ∂J(ξ(θt))

∂ξm+1

∂ξm+1(θ
t)

∂θµ,ν,l
. (10)

24: θt+1
µ,ν,l = θtµ,ν,l − η

∂J(ξ(θt))
∂θµ,ν,l

.
25: end for
26: end for
27: end for
28: t = t+ 1.
29: end for

9

Regarding the computation of the partial derivatives, we have that for the output neuron

∂ŷ
(L+1)
i

∂z
(L+1)
i

= 1 (19)

while for all other neurons
∂ŷ

(l)
i,ρ

∂z
(l)
i,ρ

=

{
0, z

(l)
i,ρ ≤ 0

1, z
(l)
i,ρ > 0

(20)

All these relations allow us to modify lines 5, 16, 21 and 23 in Algorithm 1 in order to obtain the
specific version for the binary classification problem (See Algorithm 2).

Algorithm 2 Backpropagation Algorithm for Binary Classification
1: Initialize the network hyperparameters.
2: ŷ

(0)
i = xi.

3:
∂ŷ

(L+1)
i

∂ŷ
(L+1)
i

= 1

4: for Repeat until convergence do
5: Compute ∂ξm+1(θ

t)
∂θµ,ν,l

= 2θtµ,ν,l ∀µ, ν, l. (11)
6: for l = 1, . . . , L+ 1 do . Forward propagation
7: for i = 1, . . . ,m do
8: Compute and store ŷ(l)

i .
9: end for

10: end for
11: for l = L+ 1, . . . , 1 do . Backward propagation
12: for ν = 1, . . . , nl do
13: if l 6= L+ 1 then
14: for i = 1, . . . ,m do

15: Compute and store ∂ŷ
(L+1)
i

∂ŷ
(l)
i,ν

=
∑
ρ∗

∂ŷ
(L+1)
i

∂ŷ
(l+1)

i,ρ∗
θtν,ρ∗,l+1. (14)

16: where ρ∗ ∈ {1, . . . , nl : z
(l+1)
i,ρ∗ > 0}

17: end for
18: end if
19: for µ = 0, . . . , nl−1 do
20: for i = 1, . . . ,m do
21: if l = L+ 1 then ∂ξi(θ

t)
∂θµ,ν,l

= ŷ
(l−1)
i,µ . (12)(13)

22: else ∂ξi(θ
t)

∂θµ,ν,l
=

0, z
(l)
i,ν ≤ 0

∂ŷ
(L+1)
i

∂ŷ
(l)
i,ν

ŷ
(l−1)
i,µ , z

(l)
i,ν > 0

. (12)(13)

23: end if
24: end for
25: Compute ∂J(ξ(θt))

∂θµ,ν,l
= − π

|D+
b |
∑
i+

∂ξi+ (θt)

∂θµ,ν,l
+ (1−π)
|D−
b |
∑
i−

∂ξi− (θt)

∂θµ,ν,l
+ λ∂ξm+1(θ

t)
∂θµ,ν,l

.(10)

26: where i+ ∈ {i : xi ∈ D+
b , ξi < 1} and i− ∈ {i : xi ∈ D−b , ξi > −1}

27: θt+1
µ,ν,l = θtµ,ν,l − η

∂J(ξ(θt))
∂θµ,ν,l

.
28: end for
29: end for
30: end for
31: t = t+ 1.
32: end for

10

References
[BCV13] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A

Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, 2013.

[Cyb89] George Cybenko. Approximation by Superpositions of a Sigmoidal Function. Mathe-
matics of Control, Signals and Systems, 2(4):303–314, 1989.

[FGRW12] Vitaly Feldman, Venkatesan Guruswami, Prasad Raghavendra, and Yi Wu. Agnos-
tic Learning of Monomials by Halfspaces is Hard. SIAM Journal on Computing,
41(6):1558–1590, 2012.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neural
Networks. In AISTATS, pages 315–323, 2011.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

[RDVC+04] Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and Alessan-
dro Verri. Are Loss Functions All the Same? Neural Computation, 16(5):1063–1076,
2004.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning Represen-
tations by Back-propagating Errors. Nature, 323(6088):533–536, 1986.

[Vap99] Vladimir N Vapnik. An Overview of Statistical Learning Theory. Neural Networks,
IEEE Transactions on, pages 988–999, 1999.

11

	Basics of statistical learning theory (binary classification problem)
	Basics of neural networks
	Training neural networks: the backpropagation algorithm

	Binary classification using neural networks

