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1 From binary to multiclass classification

Figure 1: Example of multiclass classification problem. Each point corresponds to an image.
Each color represents a class (the blue color is associated with class "cat" and the green color is
associated with class "dog" and the red color is associated with class "rabbit"). The goal is to
learn the boundaries (highlighted in black) between the three classes given the available images.

Recall that in binary classification, a classifier can be learnt by solving the following optimization
problem
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where D+
b and D−b are the portions of training dataset D = {(xi, yi) : xi ∈ Rd, yi ∈ {1,−1}}mi=1

corresponding to the positive and negative classes, respectively; π is the positive class prior; `(·, ·) is
the loss function; Ω(·) is the regularizer; λ is a real-positive hyperparameter weighting the relative
importance of Ω(·) with respect to the first two terms in (1); f is the function that we want to
learn.

When dealing with multiple classes, the goal is to learn multiple binary classifiers. This is
easily seen from Figure 1, where each binary classifier discriminates samples belonging to one class
against samples belonging to all other classes. This strategy is called one-versus-all classifica-
tion [Aly05]. In particular, if there are K classes, then the multiclass classification problem can
be decomposed into K binary classification subproblems (see Figure 2 for an example of decom-
position). Therefore, each subproblem j has its own dataset Dj
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b
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−
(where class j is

the positive class and all other classes are regarded as the negative class), its own positive class
prior πj and its own function fj to be learnt. Based on these considerations, problem (1) can be
reformulated in the following way:
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Figure 2: Decomposition of the multiclass classification problem.

Figure 3: Multiclass classification problem in the presence of few labeled data (coloured points)
and unlabeled data (black points)

Note that instead of training K binary classifiers independently using K different optimization
problems, in (2) we minimize only a single objective function. This is particularly useful for cases
where the models have vectorial outputs. This concept will be clarified in the following sections.

2 Learning with few labels
We are interested in learning multiclass classifiers in scenarios where only few labeled data are
available. In general, minimizing (2) in such context does not produce satisfactory and reliable
results. This is due to the fact that using only a limited amount of training data is in general not
enough to estimate correctly the true multiclass risk functional (obtained by replacing summations
with integrals in (2)).

Nevertheless, if unlabeled data are available, then we can still have the possibility to achieve
good results, namely learn good classifiers. Figure 3 shows an example of multiclass classification
with few labeled data and plenty of unlabeled samples. The problem can be decomposed into many
positive unlabeled (PU) learning subproblems (see Figure 4 for an example). The main difference
with respect to the case of traditional multiclass classification is that the goal of each subproblem
is to learn a classifier based on labeled samples belonging to only one class (regarded as positive)
and unlabeled data belonging to both the positive and negative (all other) classes. In the next
section, we review the formulation of PU learning.

3 Positive unlabeled (PU) learning

In PU learning, the training set is split into two parts, namely a set of samples Dp = {xi ∈ X}pi=1
drawn from the positive class and a set of "not labeled" samples Dn = {xi ∈ X}ni=1 drawn from
both the positive and the negative classes. The goal is the same of the binary classification problem,
but this time the supervised information is available only for one class. The learning problem can
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Figure 4: Decomposition of the multiclass classification problem with few labeled data into PU
learning subproblems.

be still formulated as a risk minimization. In fact, since P(x) = πP(x|y = 1)+(1−π)P(x|y = −1),
the risk functional can be rewritten in the following way:

R(f) =π

∫
`(f(x), 1)P(x|y = 1)dx

+ (1− π)

∫
`(f(x),−1)
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1− π dx

= π

∫
˜̀(f(x), 1)P(x|y = 1)dx +

∫
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where ˜̀(f(x), 1) = `(f(x), 1)− `(f(x),−1) is called the composite loss [DPNS15].
The risk functional in (3) can not be minimized since the distributions are unknown. In practice,

one considers the empirical risk functional in place of (3), where expectation integrals are replaced
with the empirical mean estimates computed over the available training data, namely
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The minimization of Remp is in general an ill-posed problem. A regularization term is usually
added to Remp in order to restrict the solution space and to penalize complex solutions, leading
to the definition of the following regularized empirical risk functional:

Rλemp(f) =
π

|Dp|
∑

xi∈Dp

˜̀(f(xi), 1) +
1

|Dn|
∑

xi∈Dn

`(f(xi),−1) + λΩ(f) (5)

As it is shown in [DPNS15, SDNZ16], the best loss function, that makes (5) a convex functional,
is the double Hinge loss, namely:1

`(f(x), y) = max

{
− yf(x),max

{
0,

1

2
− yf(x)

2

}}
(6)

Let us now rewrite Rλemp using the double Hinge loss function and denote the new regularized
empirical risk as Rλ,Hemp, which allows to formulate the following optimization problem:
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arg min
f∈F

{
− π

|Dp|
∑

xi∈Dp

f(xi) +
1

|Dn|
∑

xi∈Dn

max

{
f(xi),max

{
0,

1

2
+
f(xi)

2

}}
+ λΩ(f)

}
(7)

This is our final formulation of the PU learning problem.
1Recall that in the binary classification problem, the best convex loss function was the Hinge loss. In the PU

learning scenario, the Hinge loss produces a non-convex risk functional (due to the presence of the composite loss).
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Figure 5: Feedforward neural network.

4 Multiclass PU learning
The extension of (7) to the multiclass scenario can be performed by adopting a similar strategy
used in Section 1. In particular, each subproblem j has its own dataset Dj = Dj

p ∪ Dj
n (where

class j is the positive class), its own positive class prior πj and its own function fj . Therefore,
the multiclass classification problem in the presence of few labeled data, called multiclass PU
learning problem, is formulated in the following way:
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(8)

5 Problem assignment
Derive the backpropagation algorithm (in a similar way to what has been done during the lectures),
considering the following requirements:

• The objective function is defined according to (8).

• The regularizer Ω(·) corresponds to the L2 norm computed over the network parameters,
namely Ω(f(·;θ)) = ‖θ‖22.

• The general parametric model consists of a feedforward neural network with K linear neurons
in output (i.e. the j-th output neuron computes function fj , where j = 1, . . . ,K), and with
L hidden layers characterized by rectifier linear neurons. See Figure 5.

The steps required to complete the assignment are:

1. Starting from a smaller network (with same characteristics of the general one) with 2 hidden
and 1 output layers (each of them consisting of two neurons) derive the backpropagation
algorithm.

2. Extend the obtained algorithm to the general case.

Submit the report in PDF format.
Suggested online editor (using LATEX): Overleaf.
Deadline for submission: 23 November 2016, 12:00 p.m.
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